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Abstract—Recently, Mobile Crowdsourcing (MC) has aroused great interest on the part of both academic and industrial circles. One of

the key problems in MC is designing the proper mechanisms to incentivize user participation, as users are typically self-interested and

must consume a substantial amount of MC resources/costs. Although considerable research has been devoted to this problem, the

majority of studies have neglected the privacy issue in mechanism design. In this study, we consider the scenario where a mobile

crowdsourcing platform aims to maximize the crowdsourcing revenue under a budget constraint, and users are interested in

maximizing their utility while keeping their cost private. We design differentially-private mechanisms for such a scenario under an offline

setting where users bid their costs simultaneously and under an online setting where user bids are revealed one by one. We show that

our mechanisms simultaneously achieve provable performance bounds with respect to several measures, including revenue,

differential privacy, truthfulness, and individual rationality. Finally, we also conduct extensive numerical experiments to demonstrate the

effectiveness of our approach.

Index Terms—Mobile crowdsourcing, differential privacy, mechanism design

Ç

1 INTRODUCTION

IN recent years, the spread of smart phones has led to the
proliferation of Mobile Crowdsourcing (MC) applications,

where collected information about interested events can be
acquired by assigning MC tasks to individuals (users). Due
to its wide applications, MC has already aroused great inter-
est on the part of academic and industrial circles [1].

One of the central problems in MC is incentivizing user
participation, as users are typically self-interested and incur
substantial costs to perform MC tasks. However, the users
may not report their true costs, as they are selfish/rational
andmay engage in strategic behaviour to maximize their util-
ity. Based on these observations,many incentivizationmecha-
nisms for MC have appeared (e.g., [2], [3], [4], [5]); these
mechanisms usually encourage users to participate in MC
and behave truthfully through carefully determining the
monetary payments to them, while satisfying various con-
straints such as a predefined budget on total payments [6], [7].

Nevertheless, the majority of previous studies on incen-
tivization mechanism design for MC have neglected another

important issue–user privacy. In practice, the users’ costs
for participating in MC can be important information; leaks
of this information may expose users’ personal status and
hence harm user utility [8]. For example, in a spatial crowd-
sourcing application, the users’ costs for performing MC
tasks could be determined by their traveling costs to the
Point of Interests (PoIs) [9], so having the cost information
in hand would allow attackers to infer the location informa-
tion about the users [10].

As the current incentivizationmechanisms for crowdsourc-
ing determine the payments to the users based on the users’
costs,1 the cost information of the users can be easily leaked to
any third party (or adversary) who observes the payment pro-
file calculated by the crowdsourcingmechanism. One possible
way to address this problem is to use the traditional syntactic
approaches such as k-anonymity and ‘-diversity [12], [13] to
protect the users’ privacy. Roughly speaking, these syntactic
approaches try to generalize the data entries such that the abil-
ity of an adversary to link a “quasi-identifier” tuple to sensitive
values is restricted. However, it has been proved that these
approaches are vulnerable, especially when the adversary has
strong background knowledge [14]. Therefore, amore prevail-
ing approach for data privacy adopted by the recent work is
Differential Privacy (DP) [15]. The basic idea of DP is to add
noises to the answers of data queries such that it becomes
harder for an adversary who observes the output of the algo-
rithm to distinguish two neighbouring input datasets of the
algorithm (in a probabilistic sense) [15]. Compared to the tradi-
tional syntactic approaches, DP has a more rigorous mathe-
matical framework for defining and preserving privacy, and it
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1. This is based on the rationale of “individual rationality” or
“voluntary participation” [11], i.e., no user who truthfully participates
in the crowdsourcing campaign should be paid less than her/his pri-
vate cost.
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also adopts a stronger model on adversary’s background
knowledge, i.e., the adversary can observe all the data records
except for the onewhose privacy is to be protected.

However, designing differentially private incentivization
mechanisms forMC is complex, aswe typically need to simul-
taneously achieve other performance goals except DP (e.g.,
revenue maximization) under various system constraints
(e.g., the budget constraint for payments). Indeed, the desired
goals even appear to be self-contradictory. For example, it can
be easily understood that payments to users must be sensitive
to the adjustment of any single user’s cost to optimize the sys-
tem’s revenue under a limited budget, but the concern about
DP requires themechanism to be insensitive to such an adjust-
ment (to protect the user privacy). In addition, the truthful-
ness problemmust be addressed at the same time; otherwise,
the user costs revealed to the system can be noisy (and strate-
gic) data even if DP is not taken into account. In summary,
these entangled issues make it extremely difficult to design
privacy-preserving incentivization mechanisms for MC, and
a good mechanism should strive to seek a balance between
truthfulness, privacy and other optimization goals such as
revenuemaximization under rigorous resource constraints.

Due to the difficulties described above, the existing incen-
tivization mechanisms for mobile crowdsourcing usually
drop one or more requirements among truthfulness, budget-
feasibility and differential privacy, so it is simpler for them to
get some provable performance bounds. For example, a large
body of existing studies on crowdsourcing incentivization
(e.g., [6], [7], [16], [17]) have neglected the privacy issue, while
some other work considering DP has neglected the budget
constraint [8], [18]. To the best of our knowledge, no previous
work has proposed a truthful and differentially private incen-
tivizationmechanism formobile crowdsourcing under a bud-
get constraint.

1.1 Our Contributions

In this paper, we study the problem of maximizing crowd-
sourcing revenue under a budget constraint on payments
to users and propose mechanisms that achieve budget-
feasibility, truthfulness, differential privacy and high revenue
simultaneously.We consider both the offline setting where all
users show up simultaneously and the online setting where
users arrive sequentially in an arbitrary order. More specifi-
cally, our contributions can be summarized as follows:

1) In the offline setting, we first propose a benchmark
mechanism called PWDP with a 1

2 performance ratio
on the revenue without considering DP, and then pro-
vide amechanism achieving �-differential privacy and
a performance ratio close to that of PWDP.

2) In the online setting, we proposeDPP-UCB, a dynamic
pricing mechanism based on the multi-armed-bandit
paradigm [19]. We prove that DPP-UCB achieves
�-differential privacy and an OðlogW log logWÞ regret
bound with respect to revenue, whereW is the prede-
fined budget limit.

3) In addition toDP,weprove that all our proposedmech-
anisms achieve other nice properties including truthful-
ness, budget-feasibility and individual rationality [11].

4) We conduct extensive numerical experiments to
compare our algorithms with related studies, and

the experimental results demonstrate the effective-
ness of our approach.

5) To the best of our knowledge, we are the first to pro-
pose differentially private and budget-limited mecha-
nisms for mobile crowdsourcing with provable
performance bounds, both under the offline setting
and under the online setting.

The rest of our paper is organized as follows. We first for-
mally formulate our problem in Section 2, and then introduce
our mechanisms as well as their performance analysis in
Sections 3 and 4. The experimental results are shown in
Section 5. We discuss related work in Section 6 before con-
cluding the paper in Section 7.

2 PROBLEM FORMULATION

We assume that there are a mobile crowdsourcing platform
and a set of users in ½m� , f1; 2; . . . ;mg. Each user j 2 ½m� has
a private cost cj 2 ½u1; u2� for performing one crowdsourcing

task, where u1; u2 are known constants. Following [6], [8], [17],
[20], we assume that the platform has a budgetW for paying
the users, and the monetary payment to any user is selected
from a set S of candidate prices. Note that the users’ costs and
the rewards to them are usually monetized in real crowd-
sourcing applications. For example, the crowdsourcing tasks
in Amazon’s Mechanical Turk [21] are usually priced at sev-
eral cents/dollars. Based on this observation, we assume that
S is a discrete set, which is also assumed in some relatedwork
such as [22]. Therefore, the set S can be represented by fs1;
s2; . . . ; skg, where s1 < s2 � � � < sk.

A crowdsourcing mechanism (possibly a randomized
algorithm) of the platform finds a payment profile p ¼ hp1;
p2; . . . ; pmi 2 Sm and a winner set N � ½m� under the con-

straint of
P

j2N pj �W , such that any user j 2 ½m� is assigned
one crowdsourcing task (and receives payment pj) if and only
if j 2 N . The utility of any user j 2 ½m� in the crowdsourcing
mechanism can bewritten as

uj ¼ pj � cj; if j 2 N
0; otherwise

�
:

We also assume that completing the crowdsourcing tasks
yields identical values, which has also been assumed by some
related work such as [17], [20], [22]. In practice, this assump-
tion holds in crowdsourcing applications with homogeneous
tasks (e.g., reCAPTCHA [23]). Based on this assumption, the
revenue of our crowdsourcing mechanism is defined as the
total (expected) number of crowdsourcing tasks assigned to
the users, i.e.,EfjN jg.

If we know all users’ true costs, then the problem of maxi-
mizing the revenue under the budget W can be optimally
solved in polynomial time. Specifically, we can first sort the
users according to the non-decreasing order of their costs,
and then select the users according to this order until the total
cost exceeds W . However, the costs of the users are usually
unknown, which makes our problem much more complex.
To address this problem, a possible approach is to solicit the
cost information from the users such that the crowdsourcing
revenue can be optimized. However, as the users are
selfish and rational, they may report false information to
the platform to maximize their own utilities. Therefore, a
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crowdsourcing mechanism should encourage the users to tell
the truth, by aligning the personal interests of the users with
the system goal of revenuemaximization.Moreover, it should
also guarantee that no user gets a negative utility as long as
the user behaves honestly. Based on these considerations, we
formally introduce the definitions on truthfulness and Individ-
ual Rationality (IR) :

Definition 1. A crowdsourcing mechanism is called dominant
strategy truthful iff any user j 2 ½m� maximizes her/his utility
uj by reporting truthfully to the platform, regardless of how the
other users report. The mechanism is called individually ratio-
nal iff any truthful user gets a non-negative utility.

Besides achieving truthfulness, we also aim to protect
differential privacy of the users with respect to their costs
for performing the crowdsourcing tasks. Generally, protect-
ing the privacy against an attacker with more background
knowledge would be harder than that against an attacker
with less background knowledge [14], [15]. In this paper,
we assume that the attacker has strong background knowl-
edge, i.e., she/he can observe the payment profile p. Note
that the attacker can either watch p when it is published by
the mechanism, or observe it through some other ways (e.g.,
somehow snooping on the paying records of the mecha-
nism) when p is not publicly published. It would also be
very interesting to consider the case where the attacker has
no background knowledge (i.e., she/he cannot get the infor-
mation of the payment profile), but this problem might be
out of the scope of our paper due to the space constraint,
and we plan to study it in our future work.

We will also consider two models that address how users
show up in the system, i.e., the offline model and the online
model. Although we have the same goal of maximizing
crowdsourcing revenue under both of these models, the defi-
nitions on other measures such as differential privacy are dif-
ferent. In the sequel, we explain these models in detail, and
we also list some frequently used notations in Table 1.

2.1 Offline Model

In the offline model, we assume that all users appear at
the same time with arbitrary costs in ½u1; u2�. The crowd-
sourcing mechanism reveals users’ private costs by solic-
iting a bidding vector b ¼ hb1; . . . ; bmi from users, where
bj is the reported cost of user j for any j 2 ½m�, and then
decides the payment profile p as well as the winner set
N . An intuitive illustration for the offline model is
shown in Fig. 1.

As discussed in Section 1, the payment profile p should
be “insensitive” to changes of a single user’s cost/bid, so
the privacy of users can be protected. Based on this idea
and [15], we provide the following definition of privacy:

Definition 2 (�-differential privacy for the offlinemodel).
A crowdsourcing mechanism for the offline model is called �-dif-
ferentially private iff for any j 2 ½m�, any P � Sm and any two

bidding vectors b ¼ hbj; b�ji and b0 ¼ hb0j; b�ji, we have Pfp 2
Pjhbj; b�jig � expð�ÞPfp 2 Pjhb0j; b�jig, where b�j denotes the
bids of the users in ½m�nfjg.

Example 1. Suppose that a pricing mechanism selects a pay-
ment uniformly at random from S for each user. Although
such a pricing mechanism does not guarantee individual
rationality, it satisfies �-differential privacy according to
Definition 2. Indeed, we have � ¼ 0 in this case, as the var-
iations of the users’ bids do not affect the payments at all.

It is well acknowledged that randomized mechanisms
should be designed to guarantee differential privacy [15].
Therefore, the concept of truthfulness in Definition 1 can
be relaxed to the following definition on truthfulness-in-
expectation:

Definition 3 (truthfulness in expectation). A crowdsourcing
mechanism is called �-approximate truthful-in-expectation iff

Efujjhcj; b�jig � Efujjhbj; b�jig � � holds for any j; bj and

b�j. When � � 0, the mechanism is called exactly truthful-in-

expectation.

2.2 Online Model

In the online case, we assume that users arrive one by one in
an arbitrary order, and their private costs are drawn

Fig. 1. User bidding under the offline model.

TABLE 1
Some Frequently Used Notations

Notation Description

m The number of crowdsourcing users
½m� The set f1; . . . ;mg
W The budget for paying the users
N The set of users who are assigned tasks

S The set of candidate prices fs1; . . . ; skg
k The cardinality of S
x Vector ðx1; . . . ; xmÞ 2 f0; 1gm; 8j 2 ½m� : xj ¼ 1, j 2 N
p Vector ðp1; . . . ; pmÞ; pj is the payment to user j

c Vector ðc1; . . . ; cmÞ; cj is the cost of user j
b Vector ðb1; . . . ; bmÞ; bj is the bid of user j under the

offline setting

�ðbjÞ minfeje 2 S ^ bj � eg
rðb; eÞ min W=eb c; fðb; eÞf g
fðb; eÞ jfjjj 2 ½m� ^ �ðbjÞ � egj
Dl The probability that any user’s cost is no more than

sl under the online setting

’l minfmDl;W=slg
nl;t The total number of times that price sl has been

posted until time t under the online setting

Hl;t

ffiffi
8
p

log 4t4

�nl;t
ð1þ lognl;tÞ

sl;t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 ln t=2nl;t

p
Dl;t The estimation onDl at any time t by using the

hybrid mechanism under the online settinge’l;t minfmðDl;t þ sl;t þHl;tÞ;W=slg
½u1; u2� The range of users’ costs
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independently from an unknown distribution. This assump-
tion generalizes the standard Bayesian mechanism design
model adopted in [4], [5], [11], where the cost distribution of
users is assumed to be known in advance.

When any user j 2 ½m� shows up, the mechanism selects
and posts a take-it-or-leave-it price pj 2 S for user j based on
the prices selected in the history and past observations on
users f1; . . . ; j� 1g. After observing the posted price pj, user j
reports xj 2 f0; 1g to the mechanism, where xj denotes
whether user j accepts the price (xj ¼ 1 for acceptance). The
mechanism adds j to the winner set N if and only if xj ¼ 1.
This process continues until either the budget W is depleted
or the last userm has been processed. An intuitive illustration
for posted pricing under the onlinemodel is shown in Fig. 2.

Note that the posted-pricing scheme described above has
also been adopted in many commercial crowdsourcing sys-
tems such as Amazon’s Mechanical Turk. However, achiev-
ing differential privacy is trickier in the online model than
that in the offline model, as we have to guarantee that the
mechanism achieves differential privacy at each time a user
shows up. Therefore, we revise Definition 2 and get the fol-
lowing definition on DP for the online model:

Definition 4 (�-differential privacy for the onlinemodel).
Let pj and xj denote hp1; . . . ; pji and hx1; . . . ; xji, respectively.
Any pair ðxj; x0jÞ 2 f0; 1gj 	 f0; 1gj is called adjacent iff xj and
x0j differ in at most one element. An online pricing mechanism is
�-differentially private iff for any j 2 ½m�, any P � S, any

pj�1 2 Sj�1 and any adjacent pair ðxj�1; x0j�1Þ 2 f0; 1gj�1 	 f0;
1gj�1, we have Pfpj 2 P jpj�1; xj�1g � expð�ÞPfpj 2 P jpj�1; x

0
j�1g.

Example 2. Suppose that j ¼ 3. Then the pair ðxj�1; x0j�1Þ ¼
ðh0; 1i; h0; 0iÞ is adjacent. However, if ðxj�1; x0j�1Þ ¼ ðh0;
0i; h1; 1iÞ, then ðxj�1; x0j�1Þ is not adjacent. Indeed, there are
totally 12 possible adjacent pairs for ðxj�1; x0j�1Þ. If none of

these adjacent pairs result in a significant change of pj (in

the probabilistic sense explained in Definition 4), then

such a pricing mechanism achieves differential privacy (at
time j). Indeed, the conditions in Definition 4 are stronger,

as it requires that the pricing mechanism achieves differen-

tial privacy for any 1 � j � m.

3 MECHANISM DESIGN FOR THE OFFLINE MODEL

In this section, we design mechanisms for the offline model.
We first introduce a benchmark algorithm without consid-
ering DP. Then, we propose our privacy-preserving mecha-
nism and analyze its performance.

3.1 A Truthful Mechanism without Considering DP

It can be seen that the revenue of any mechanism that
achieves individual rationality under the offline model can

be upper-bounded by

Ropt ¼ max jUj : U 2 2½m� ^
X
j2U

�ðbjÞ �W

( )
; (1)

where �ðbjÞ ¼ minfeje 2 S ^ bj � eg. Moreover, we can

optimally find a set of users U � ½m� such that the revenue
got from U is Ropt, assuming that all users in ½m� bid truth-

fully. However, when users act strategically, we have to

sacrifice some revenue to ensure truthfulness. A naive

idea for designing a truthful mechanism is to use the

VCG mechanism [11], but it is known that this approach

can compromise budget-feasibility [2]. Therefore, we pro-

pose PWDP, an algorithm that simultaneously achieves

truthfulness and budget-feasibility (but without achieving
DP), as shown by Algorithm 1. Algorithm 1 serves as a

benchmark algorithm for our problem under the offline

setting.
The idea of Algorithm 1 is explained as follows. We first

sort the users according to the non-decreasing order of the
minimum payments to them to ensure individual ratio-
nality (line 1), and then add the users into the winner set
according to their orders sorted by line 1 and a filter condition
in line 3. After that, we calculate the payment profile to the
users (lines 5-7), such that each user j 2 N is equally paid
with a “threshold value” to guarantee truthfulness.More spe-
cifically, we useK to denote the maximum equal payment to
each user in N under the budget constraint (line 5); and the
payment pj to any winner j 2 N is set to the smaller one
between K and �ðbdqþ1Þ (line 7), where q is the cardinality of
N . Intuitively, such a payment profile guarantees that, if any
of thewinner j 2 N unilaterally raises her/his bid to be larger
than pj, then she/he would no longer be selected as a winner.
This property is sufficient for proving the truthfulness of
Algorithm 1 due to the Myerson’s Lemma [11], as shown by
the following theorem.

Algorithm 1. The PWDP Algorithm

Input: b;W;m;S
Output: p;N

1 Sort the users in ½m� into d1; . . . ; dm such that �ðbd1Þ �
�ðbd2Þ � � � � �ðbdmÞ, ties broken according to the id of the

users;
2 for j ¼ m to 1 do
3 if �ðbdjÞ �W=j then

4 N  fd1; . . . ; djg; break;
5 q jN j;p 0;K  maxfeje 2 S ^ e �W=qg
6 for j ¼ 1 tom do
7 if j 2 N then pj  minf�ðbdqþ1Þ;Kg;
8 return p;N

Theorem 1. Algorithm 1 achieves dominant strategy truthful-
ness, individual rationality and budget feasibility.

Proof. Clearly, Algorithm 1 achieves budget feasibility
according to line 7. LetNðbÞ denote the winner set output
by Algorithm 1 given the input bidding vector b. To
prove the truthfulness, we only need to prove the follow-
ing conditions according to the celebrated Myerson’s

Fig. 2. Posted pricing under the online model.
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lemma [11]: (1) Algorithm 1 is monotone, i.e, 8j 2 ½m�, if
b0j � bj; then, j 2 Nðbj; b�jÞ implies j 2 Nðb0j; b�jÞ for every
b�j; (2) Each winner is paid the threshold value, i.e., each

winner j is paid pj ¼ inffbj : j =2 Nðbj; b�jÞg. Clearly, con-
dition (1) holds. Next, we prove condition (2):

Case 1: �ðbdqþ1Þ � K:
In this case, any user j 2 N has utility uj ¼ �ðbdqþ1Þ�

cj � �ðbjÞ � cj, which is non-negative if the user is truthful

(i.e., bj ¼ cj). In addition, any user j 2 N bidding any

b0j � �ðbdqþ1Þ still wins, as she/he is still ranked before user

bdqþ1 with such a bid b0j, and we have �ðb0jÞ � �ðbdqþ1Þ �
W=q �W=z for any z 2 ½q�. However, the user will lose by
bidding any b0j > �ðbdqþ1Þ, because she/he would be

ranked after bdqþ1 with such a bid, and we have �ðb0jÞ �
�ðbdqþ1Þ > W=ðq þ 1Þ �W=z for any z � q þ 1.

Case 2:K < �ðbdqþ1Þ:
In this case, any user j 2 N has the utility uj ¼ K�

cj � �ðbdqÞ � cj � �ðbjÞ � cj, which is non-negative if bj ¼
cj. Any user j 2 N bidding any b0j � K still wins, as

�ðb0jÞ < �ðbqþ1Þ and �ðb0jÞ �W=q �W=z for any z 2 ½q�.
Bidding b0j > K will make user j lose, as �ðb0jÞ > W=q �
�ðbdqÞ �W=z for any z � q.

Note that the above reasoning also proves individual
rationality. Hence, the theorem follows. tu
Besides guaranteeing truthfulness, Algorithm 1 also

achieves a constant performance ratio on the revenue:

Theorem 2. The revenue obtained by Algorithm 1 is at least
1
2Ropt.

Proof. Suppose that Algorithm 1 outputs N ¼ fd1; . . . ; dqg
and qmax ¼ maxfzjPz

t¼1 �ðbdtÞ �Wg. So Ropt ¼ qmax and

q � qmax. If q ¼ qmax, the theorem trivially holds. Thus, we

assume. Note that we have �ðbdqþ1Þ > W=ðq þ 1Þ and

ðqmax � qÞ�ðbdqþ1Þ �
Pqmax

t¼1 �ðbdtÞ �W , so we get qmax � 2q.

Hence, the theorem follows. tu
Example 3. Suppose that S ¼ f1; . . . ; 10g,W ¼ 11,m ¼ 5 and

b ¼ hb1; b2; b3; b4; b5i ¼ h2; 5; 1; 3; 6i. According to line 1 of

Algorithm 1, we have hd1; d2; d3; d4; d5i ¼ h3; 1; 4; 2; 5i.
According to lines 2-4 of Algorithm 1, we have N ¼ f1; 3;
4g. According to lines 5-7 of Algorithm 1, we have hp1; p2;
p3; p4; p5i ¼ h3; 0; 3; 3; 0i. It is noted that, when all the users

are truthful, an optimal solution is to select the users 1, 2, 3

and 4, and pay them 2, 5, 1, 3, respectively. This optimal

solution has the revenue 4, while the solution output by

Algorithm 1 has the revenue 3. Therefore, Algorithm 1

achieves at least half of the optimal revenue in this instance

of our problem.

3.2 The OPEX Mechanism

In this section, we propose a privacy-preserving mechanism
called OPEX, shown in Algorithm 2. The idea of Algorithm 2
is that we first randomly select a payment profile with iden-
tical payments to all users (line 1) and then determine the
winner set using this payment profile and the budget

constraint W (lines 2-4). To optimize revenue, OPEX selects
each payment profile hpox; pox; . . . ; poxi with the probability
proportional to rðb; poxÞ, which denotes the revenue that
can be gained by using this payment profile. More specifi-
cally, the function r is defined as

8e 2 S : rðb; eÞ ¼ min W=eb c; fðb; eÞf g; (2)

where fðb; eÞ , jfjjj 2 ½m� ^ �ðbjÞ � egj.
According to lines 2-4 of Algorithm 2, any bidder j selected

in the winner set L satisfies the condition bj � pox. Therefore,
the utility of any truthful bidder j is either 0 or pox � bj � 0.
Thus, OPEX achieves individual rationality. In addition, from
lines 3-4, we can see that the total payment of OPEX is no

more than ‘pox � bW=poxcpox �W , so OPEX achieves bud-

get-feasibility. Moreover, inspired by the performance analy-
sis for the exponential mechanism [15], [24], we can also
prove:

Theorem 3. OPEX achieves �-differential privacy and
2�-approximate truthfulness in expectation.

Proof. For any b ¼ hbi; b�ii, b0 ¼ hb0i; b�ii and any s 2 S, we
have

Pfp ¼ hs; . . . ; sijbg=Pfp ¼ hs; . . . ; sijb0g

¼ exp f�rðb; sÞ=2gP
e2S exp f�rðb; eÞ=2g

�
P

e2S exp f�rðb0; eÞ=2g
exp f�rðb0; sÞ=2g

� expf�Dr=2gexp f�Dr=2g
� expf�Drg;

(3)

where Dr ¼ maxe2Sjrðb; eÞ � rðb0; eÞj.
Note that 8e 2 S : jfðb; eÞ � fðb0; eÞj � 1. When W=eb c �

minffðb; eÞ; fðb0; eÞg, we have jrðb; eÞ � rðb0; eÞj ¼ 0. When

W=eb c � maxffðb; eÞ; fðb0; eÞg, we have jrðb; eÞ � rðb0; eÞj � 1.

When fðb; eÞ � W=eb c � fðb0; eÞ or fðb0; eÞ � W=eb c � fðb;
eÞ, we have jrðb; eÞ � rðb0; eÞj � jfðb; eÞ � fðb0; eÞj � 1. There-

fore, we have Dr � 1, and hence OPEX achieves �-

differential privacy. Finally, according to Proposition

10.1 of [15], it can be seen that OPEX achieves 2� approxi-

mate truthfulness truthful-in-expectation. tu
Example 4. Reconsider the problem instance in Example

3. We have fðb; 1Þ ¼ 1; fðb; 2Þ ¼ 2; fðb; 3Þ ¼ fðb; 4Þ ¼ 3; fðb;
5Þ ¼ 4 and fðb; iÞ ¼ 5 for i � 6. According to Eqn. (2), we

have rðb; 1Þ ¼ 1; rðb; 2Þ ¼ 2; rðb; 3Þ ¼ 3; rðb; 4Þ ¼ rðb; 5Þ ¼
2 and rðb; iÞ ¼ 1 for i � 6. Therefore, according to line 1

of Algorithm 2, the probability that Algorithm 2 selects

pox ¼ 3 is the largest among all the ten prices in S. When

pox ¼ 3, we haveK ¼ f1; 3; 4g and ‘ ¼ 3 according to lines

3-4 of Algorithm 2, so we have N ¼ f1; 3; 4g according to

line 4 of Algorithm 2.

Next, we analyze the performance of OPEX in terms of
revenue. Note that Equation (1) implies that users should be
paid unequally to obtain the maximal revenue Ropt. How-
ever, the following theorem reveals that we can obtain at
least half of the optimal revenue by using identical pay-
ments to all users:
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Algorithm 2. The OPEX Mechanism

Inout: b;W;m;S; � 2 ½0; 1�
Output: p;N

1 Select pox 2 S with probability proportional to expf�rðb;
poxÞ=2g;

2 K  fjjj 2 ½m� ^ bj � poxg;
3 ‘ minfjKj; bW=poxcg;
4 N  an arbitrary set L � K such that jLj ¼ ‘;
5 returnN ;p ¼ hpox; pox; . . . ; poxi

Theorem 4. Let sopt ¼ argmaxe2Srðb; eÞ. Then, we have Ropt �
2rðb; soptÞ.

Proof. We assume w.l.o.g. that �ðb1Þ � �ðb2Þ � � � � �ðbmÞ. Let
v ¼ rðb; soptÞ and h ¼ Ropt. If v ¼ m or v � h, the theorem

is trivially proved. When v < m and v < h, we must

have v�ðbvÞ �W and ðvþ 1Þ�ðbvþ1Þ > W . Note that

we also have
Ph

j¼1 �ðbjÞ �W . Therefore, we get W �Ph
j¼vþ1 �ðbjÞ � ðh� vÞ�ðbvþ1Þ > h�v

vþ1W , so Ropt ¼ h � 2v ¼
2rðb; soptÞ. tu
Note that OPEX outputs a payment profile with identical

payments. So, we can use Theorem 4 to prove Theorem 5:

Theorem 5. We have rðb; poxÞ � 1
2Ropt �Oðlog k� Þ with high

probability.

Proof. Let # ¼ 1
2Ropt � 2 ln kþz

� , where z is a positive constant

(e.g., we can set z ¼ 10). Using Theorem 4, we have

Pfrðb; poxÞ < #g � kexpf�#=2g
expf�rðb; soptÞ=2g

� kexpf�#=2g=expf�Ropt=4g
¼ kexp �ð2#�RoptÞ=4

� � ¼ expf�z=2g;

(4)

which implies that Pfrðb; poxÞ � #g > 1� expf�z=2g.
Hence, the theorem follows. tu
It can be seen that the only difference between the

bounds shown in Theorems 2 and 5 is the Oðlog k� Þ additive
factor. This suggests that we would not lose too much reve-
nue by considering differential privacy.

4 MECHANISM DESIGN FOR THE ONLINE MODEL

In the online case, our problem becomes more difficult, as
we have to guarantee DP at any time, and the cost distribu-
tion of the users is unknown. Based on these considerations,
the intuitive idea of our algorithm can be roughly explained
as follows. Instead of using the true means of the users’
costs (which are unknown), we try to use the empirical
means to design a pricing mechanism. As such, if the empir-
ical means are accurate enough, then the revenue got by our
pricing mechanism should be close to the optimal revenue
got under the Bayesian setting. However, directly using the
empirical means could breach the users’ privacy. Therefore,
we will add noises into the empirical means before we use
them, and carefully adjust the “noise level” such that the
resulted noisy empirical means can achieve high accuracy
while satisfying differential privacy.

Based on the above idea, wewill leverage themulti-armed-
bandit (MAB) paradigm [25] and the hybrid mechanism [26]
to design our algorithm. Intuitively, the MAB paradigm ena-
bles us to quickly find an approximate solution based on the
empirical means, while the hybridmechanism [26] provides a
method for calculating noisy empirical means that achieve
differential privacy and high accuracy. However, it is highly
non-trivial to design an algorithmwith provable performance
bounds based on these intuitive ideas, and we will elaborate
our algorithms in the following sections.

4.1 The Hybrid Mechanism

The goal of the hybrid mechanism [26] is to publish the
aggregation of private data. More specifically, suppose that
there is a data sequence d1; d2; � � � where dn 2 f0; 1g for any
n 2 N. The hybrid mechanism is a function B satisfying

Bðfd1; . . . ; dngÞ ¼
P

j2½n� dj þ gn for any n 2 N, where gn is a

random variable (i.e., the “noise”). By carefully choosing
the probability distribution of gn, the hybrid mechanism
can achieve �-differential privacy, i.e., for any n 2 N, any

j 2 ½n�, any A ¼ fd1; . . . ; dj; . . . ; dng, A0 ¼ fd1; . . . ; d0j � � � ; dng
and any Z � R, we have PfBðAÞ 2 Zg � expð�ÞPfBðA0Þ 2 Zg.
Moreover, it has been shown that the hybrid mechanism
has the following nice property:

Lemma 1 ([26], [27]). Define xðk; nÞ ¼
ffiffi
8
p
� log 4

k

� �
lognþ

ffiffi
8
p
� log 4

k

� �
.

For any k � n�d (d > 0) and any n 2 N, we have Pfjgnj �
xðk; nÞg � k.

Intuitively, Lemma 1 implies that we do not have to add
a too large “noise” (i.e., gn) to the sum of d1; . . . ; dn such that
the noisy sum Bðfd1; . . . ; dngÞ satisfies �-differential privacy.
More specifically, as indicated by Lemma 1, gn only needs
to be logarithmic to n in a probabilistic sense. This property
will be useful for the performance analysis of our algo-
rithms in Section 4.3.

4.2 The DPP-UCB Algorithm

With the hybrid mechanism, we propose a privacy preserv-
ing mechanism called DPP-UCB (shown in Algorithm 3).
Clearly, if we consider a Bayesian setting where the cost
distribution of the users is known, then the revenue got
by offering any price sl 2 S to all users is at most ’l ¼
minfmDl;

W
sl
g, where Dl ¼ Pfc1 � slg. Moreover, it has been

known that, the maximum revenue that we can get by offer-
ing a single price to all users is a constant approximation to
the revenue got by any truthful mechanism [2], [28]. There-
fore, the main idea of DPP-UCB is trying to select the price
sl
 at each time t, where l
 ¼ argmaxl2½jSj�’l.

However, Dl and ’l are unknown for any l 2 ½jSj�. There-
fore, we use the hybrid mechanism to get a noisy empirical

mean Dl;t as the estimation of Dl for any l 2 ½jSj� and t > 0.

More specifically, we set Dl;t ¼ eSl;t=nl;t, where eSl;t ¼ Bðfxj :

ij ¼ l ^ j 2 ½t�gÞ is the noisy sum output by the hybridmecha-

nism (which guarantees �-differential privacy) and nl;t is the

total number of times that sl has been posted until time t.
According the above discussions, a straightforward idea

is to directly select a price sl0 2 S at any time tþ 1 such that

minfmDl0;t;
W
sl0
g is maximized. However, this method cannot

lead to good performance ratios, as the estimation Dl;t is not
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accurate for any l and t. Therefore, we introduce two factors

Hl;t ,
ffiffi
8
p

log 4t4

�nl;t
ð1þ lognl;tÞ and sl;t ,

ffiffiffiffiffiffiffi
5 ln t
2nl;t

q
as the “exploration

factors” to compensate for the estimation error of Dl;t, and
hence select a price l to maximize

e’l;t , minfmðDl;t þ sl;t þHl;tÞ;W=slg; (5)

at any time tþ 1. Indeed, the exploration factorsHl;t and sl;t

are elaborately designed to get a low “regret” of DPP-UCB,
which will be seen from our performance analysis in Section
4.3.

With the intuitive ideas explained above, we describe the
details of Algorithm 3 as follows. Algorithm 3 first tries
each price in S to get the initial knowledge (line 4), and then
selects sit 2 S as the posted price pt for any user t 2 ½m�
according to Eqn. (5) (line 5). After observing any user t’s
response to the posted price, DPP-UCB updates the parame-
ters (lines 9-12) and stops at a finite time T � m, such that
user T is the last paid user.

Note that Algorithm 3 always selects each price in S
sequentially in the initialization phase (i.e., when t � jSj).
Therefore,Algorithm3 trivially achieves �-differential privacy
in the initialization phase due to the reason that the price
selection therein is not affected by the users’ actions at all.
After the initialization phase, Algorithm 3 selects prices based
on the output of the hybrid mechanism, which achieves dif-
ferential privacy. As DP is immune to post-processing [15],
we can prove:

Algorithm 3. The DPP-UCB Algorithm

Input:W;m;S; � 2 ½0; 1�
Output: p;N ; T

1 t 1;W0  W , 8i 2 f1; . . . ; jSjg : ni;0  0;
2 p 0;N  ;;T  0; x 0
3 While t � m do
4 if t � jSj then it  t;
5 else it  argmaxl2f1;...;jSjge’l;t�1;
6 pt  sit ;
7 if sit > Wt�1 then break;
8 else T  t;
9 Post sit to user t and update xt;

10 if xt ¼ 1 thenN  N [ ftg
11 Wt  Wt�1 � sit � xt /*Wt: leftover budget*/
12 nit;t  nit;t�1 þ 1; t tþ 1

13 return p;N ; T

Theorem 6. DPP-UCB achieves �-differential privacy.

Note that DPP-UCB decides the price pt for any user t even
before user t arrives. Thus, it can be easily proven that DPP-
UCB achieves dominant strategy truthfulness and individual
rationality as pt is independent of user t. More specifically,

any user t 2 ½m� maximizes her/his utility ut by truthfully

reporting xt ¼ 1ðct � ptÞ and then gets a non-negative utility

xtðpt � ctÞ, where 1ð�Þ is the indicator function.

4.3 Performance Analysis on the Revenue

In this section, we show that DPP-UCB has a low “regret” on

revenue, where the regret is defined as Reg ¼ ’l
 � EfjN jg
(recall that N is the winner set output by DPP-UCB).

Intuitively, the regret measures how much revenue that we
can lose compared with an omniscient algorithm that does
not guarantee differential privacy. Before we describe our
regret analysis, we quote the celebrated Hoeffding’s inequal-
ity in Lemma 2,which is used in our proofs:

Lemma 2 (Hoeffding’s inequality [29]). Let Y1; Y2; . . . ; Yn be
a sequence of random variables with common support [0, 1].

If EfYijY1; Y2; . . . ; Yi�1g � F for any i � n, then we have

Prf1n
Pn

i¼1 Yi �F � kg � expf�2k2ng for any k > 0. If EfYijY1;

Y2; . . . ; Yi�1g � F for any i � n, then we have Prf1n
Pn

i¼1 Yi �
F � kg � expf�2k2ng for any k > 0.

The main idea of our regret analysis is that we first bound
the expected number of the sub-optimal prices selected from
Snfsl
g by the DPP-UCB algorithm and then bound the reve-
nue loss suffered from selecting these sub-optimal prices.
However, our analysis is very different from that in the tradi-
tional MAB problem [19], [25], as we need to take DP into
account and handle the sub-optimal prices in fsl 2 Sjl > l
g
and fsl 2 Sjl < l
g separately. In the sequel, we give the

regret analysis in detail.
Wefirst give some bounds on the probabilities of the subop-

timal prices (i.e., prices in Snfsl
g) being selected inDPP-UCB,
as shown by Lemmas 5 and 6. Intuitively, Lemmas 5 and 6
imply that, after the suboptimal prices in Snfl
g have been
selected a sufficient number of times in the history, the proba-
bility of selecting them again by DPP-UCB is very small, as
DPP-UCB has acquired “sufficiently accurate” knowledge
about these prices to determine that they are sub-optimal. The
proof of Lemma 5 leverages Lemma 4, which uses a property
of the celebratedLambert function stated in Lemma 3:

Lemma 3 ([30], [31]). Let �W be the Lambert function which

satisfies 8x 2 R : x ¼ �W ðxexÞ. The equation e�cx ¼ a0 x� rð Þ
(a0; c; r 2 R; a0 6¼ 0) has the solution x ¼ rþ 1

c
�Wðce�cra0

Þ.

Lemma 4. Define Dl ¼ ’l
 � ’l, QlðtÞ ¼ 2
ffiffi
8
p

ln 4t4

� 1�nð Þ Dl=mð Þ and zðl; tÞ ¼
maxð 10 ln t

n2ðDl=mÞ2
; QlðtÞðlnQlðtÞ þ 7ÞÞ where n is any number in

ð0; 1Þ. When nl;t > zðl; tÞ, we must have Dl=m > 2sl;tþ 2Hl;t

Proof. Based on the properties of the celebrated Lambert
function [32] and Lemma 3, we know that a sufficient con-

dition for the inequality i > y ln iþ yð8i 2 Nþ; 8y > 0Þ to
hold is i > yðln yþ 7Þ. Therefore, if nl;t > QlðtÞ lnQlðtÞ þ 7ð Þ,
we must have nl;t > Ql;tð1þ lnnl;tÞ, which implies ð1� nÞ
Dl=m > 2Hl;t. In addition, it can be easily known that

nDl=m > 2sl;t when nl;t > 10 ln t
n2 Dl=mð Þ2. Hence, the lemma

follows. tu
Lemma 5. For any t � k and any j < l
, we have Pfitþ1 ¼ j;

nj;t � zðj; tÞg � 6t�4.

Lemma 6. For any t � k and any j > l
, we have
Pfitþ1 ¼ jg � 2t�4.

With Lemmas 4, 5, and 6,we are able to bound the expecta-
tions of the numbers of the sub-optimal prices selected by
DPP-UCB, which is shown in Lemmas 8 and 9. Intuitively,
Lemma 8 shows that the expected number of times that any
sub-optimal price j < l
 is selected in DPP-UCB is bounded
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byOðzðj;bÞÞ, while Lemma 9 shows that the expectednumber

of times that any sub-optimal price j > l
 is slected in DPP-
UCB is bounded by a constant. The proof of Lemma 8 lever-
ages Lemma 7,which essentially provides an upper bound on
DPP-UCB’s stopping time (i.e., T ).

Lemma 7. Let b ¼ d2W=ðs1D1Þe. Then, we have
P1

t¼b PfWt �
0g � 2s2k=ðs1D1Þ2

Lemma 8. For any j < l
, we have Efnj;Tg � 2dzðj; bÞeþ
2s2

k

ðs1D1Þ2
þ p4

15 .

Proof. For any j < l
, we have

nj;b ¼ 1þ
Xb�1
t¼k

1fitþ1 ¼ jg

¼ 1þ
Xb�1
t¼k

1fitþ1 ¼ j;nj;b < zðj;bÞg

þ
Xb�1
t¼k

1fitþ1 ¼ j;nj;b � zðj; bÞg

� dzðj;bÞe þ
Xb�1
t¼k

1fitþ1 ¼ j;nj;b � zðj;bÞg:

(6)

If nj;b � zðj;bÞ, there must exist certain v 2 ½k;b� 1� such
that nj;v < zðj;bÞ and nj;vþ1 � zðj;bÞ. Therefore, we have

Xb�1
t¼k

1fitþ1 ¼ j;nj;b � zðj;bÞg

� dzðj;bÞe þ
Xb�1
t¼vþ1

1fitþ1 ¼ j;nj;b � zðj; bÞg

� dzðj;bÞe þ
Xb�1
t¼vþ1

1fitþ1 ¼ j;nj;t � zðj;bÞg

� dzðj;bÞe þ
Xb�1
t¼k

1fitþ1 ¼ j;nj;t � zðj; tÞg:

(7)

Combining Equation (6) and (7) with Lemmas 5 and 7
gives us

Efnj;Tg � Efnj;bg þ E

�X1
t¼b

1fit ¼ jg
�

� 2dzðj;bÞe þ E

�Xb�1
t¼k

1fitþ1 ¼ j;nj;t � zðj; tÞg
�

þ E

�X1
t¼b

PfWt � 0g
�
� 2dzðj; bÞe þ 2s2k=ðs1D1Þ2

þ
X1
t¼1

6t�4 � 2dzðj;bÞe þ 2s2k=ðs1D1Þ2 þ p4

15
;

(8)

where (8) is due to the Riemann zeta function
P1

t¼1 t
�4 ¼

p4

90 [19]. Hence, the lemma follows. tu
Lemma 9. For any j > l
, we have Efnj;Tg � 1þ p4

45

Proof. Using Lemma 6 and the Riemann zeta function, we

can get Efnj;Tg¼Ef1þ
PT�1

t¼k 1fitþ1 ¼ jgg � 1þP1
t¼1 2t

�4 ¼
1þ p4

45 . tu

Now, we are ready to give the regret bound of DPP-UCB,
as shown by Theorem 7. Themain idea for proving Theorem 7
is that, as selecting l
 incurs zero regret, we only need to con-
sider the regret caused by selecting the sub-optimal prices in
Snfl
g, which can be calculated by using Lemmas 8 and 9. To
derive the regret bound shown in Theorem 7, we also need a
lower bound on the stopping time T of DPP-UCB, which is
presented in Lemma 10:

Lemma 10. The stopping time T of the DPP-UCB algorithm is
bounded by

EfTg > min W=ðDl
sl
 Þ;mf g � u2=ðDl
sl
 Þ

�
X
j> l


Efnj;Tg Djsj
Dl
sl


� 1

	 

:

Theorem 7. The regret of the DPP-UCB algorithm has an upper
bound ofOðlogW log logWÞ.

Proof. Note that jN j ¼PT
t¼1 xt. Therefore, we have

Reg � ’ðsl
Þ � E

�XT
t¼1

xt

�
¼ minfmDl
 ;W=sl
g � EfTgDl


þ
X
j2½k�

Efnj;Tg Dl
 �Dj

� �
� minfmDl
 ;W=sl
g � EfTgDl


þ
X
j< l


Efnj;Tg Dl
 �Dj

� �
� u2

sl

þ

X
j< l


Efnj;Tg Dl
 �Dj

� �
þ 1

sl


X
j> l


Efnj;Tg Djsj �Dl
sl

� �

(9)

� u2

sl

þ

X
j< l


Dl
 �Dj

� �	
2dzðj;bÞe þ 2s2k

ðs1D1Þ2
þ;p

4

15




þ
X
j> l


Djsj
sl

�Dl


	 

1þ p4

45

	 

;

(10)

where (9) is due to Lemma 10 and (10) is due to Lemmas 8
and 9. Note that the factor zðj;bÞ is in the order of
OðlogW log logWÞ. Hence, the theorem follows. tu
It can be seen from Theorem 7 that the average regret of

DPP-UCB asymptotically approaches zero; i.e., we have
limW!1Reg=W ¼ 0. This suggests that DPP-UCB is a
Hannan-consistent learning algorithm [19].

Remark. Until now, we have assumed that the number of
users m is fixed and known under the online setting.
Although this assumption has also been widely adopted
in the literature (e.g., [20], [28], [33], [34]), it may not hold
in some crowdsourcing applications where the number of
participants is stochastic. Fortunately, in such cases, we
can often get the distribution knowledge and hence the
expected value of the number of participants. For exam-
ple, the historical mobility traces of the users could be
used to estimate the number of users appeared in the
Points of Interests (PoI) of mobile crowdsourcing applica-
tions [9], [35].
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Based on the above observation, we can use a simple
method to extend our DPP-UCB algorithm to the case that the
number of users is stochastic with known distributions. More
specifically, we can simply replacem by its expectation in our
algorithms, while all our performance analysis and perfor-
mance bounds remain the same. This is due to the reason that,
the revenue of any pricing strategy under the online setting is
originally defined as an expected value (see Section 2.2), so
we should replacem by its expected value for calculating the
revenue of any price in S (including the optimal price) when
m is stochastic. As such, the expected value of m can be con-
sidered as a constant in our algorithms, so all our performance
analysis still holds under this setting.

5 PERFORMANCE EVALUATION

We conduct extensive experiments to study the performance
of our mechanisms. The purpose of our experiments is to
compare our algorithms with the related work on revenue
and regret, using both synthetic datasets and real datasets.

5.1 Experimental Settings

In the experiments, we compare OPEX with Ropt and PWDP
in the offline setting, and compareDPP-UCBwith several rep-
resentative algorithms proposed in the literature including
BP-UCB [20], UCB-BV2 [36] and MRCB [37]. BP-UCB is a
dynamic pricing algorithm for customers arriving online,
while UCB-BV2 and MRCB are two representative budgeted
MAB algorithms with random arm costs. As neither of BP-
UCB, MRCB and UCB-BV2 guarantees differential privacy,
we have to adapt them to achieve DP for fair comparison.
Therefore, we incorporate the hybrid mechanism into BP-
UCB, MRCB and UCB-BV2, i.e., using the noisy means as the
estimations of the expectations of the arms’ costs (as we do in
DPP-UCB). We also implement OPT
, which is the bench-
mark algorithm that always selects the price sl
 in the online
setting.

We use both a real-world dataset and synthetic datasets
to test the performance of our implemented algorithms. The
real-world dataset used by us is T-Drive [38], which is a
mobile trajectory dataset published by Microsoft Research.
This dataset contains the GPS trajectories of 10,357 taxis in
the Beijing city. In our experiments, we consider the drivers
in the T-Drive dataset as mobile crowdsourcing users, and
their costs are set in proportional to their travelling distan-
ces. The distribution of the users’ travelling distances in the
T-Drive dataset is plotted in Fig. 3.

In each of the generated synthetic datasets, the cost of
any user is sampled from one of the following distributions
(by a uniformly random selection): the Gaussian distribu-
tion Nðm; s2Þ (truncated to have the support ½0; 1�), the
uniform distribution Uð0; 1Þ and the beta distribution
Betaða;bÞ. Both of the parameters m; s are randomly sam-
pled from the uniform distribution Uð0; 1Þ, while a;b are
randomly sampled from Uð0; 10Þ. To achieve unbiased per-
formance comparison, the reported data for the synthetic
datasets are the average running results on 200 datasets. We
also follow [20] to set u1 ¼ 0:01, u2 ¼ 1 and k ¼ 20 for all the
implemented algorithms.

5.2 Experimental Results

5.2.1 Overall Performance

In Fig. 4, we compare the performance of the implemented
algorithms under the offline setting using the T-Drive data-
set, where the budget W is scaled from 100 to 1000 and � is
set to 1, 0.6 and 0.2 in Figs 4a and 4c, respectively. It can be
seen that the revenue of all offline algorithms increases with
W , which can be explained by the reason that more crowd-
sourcing users can be recruited when W increases. Another
fact revealed by Fig. 4 is that the revenue of OPEX does not
vary much when � decreases, which demonstrates the
robustness of OPEX against the variation of �. Finally, it can
be seen from Fig. 4 that the performance of OPEX is very
close to PWDP, which indicates that OPEX can achieve dif-
ferential privacy without losing too much revenue.

In Fig. 5, we study the revenue and regret performance of
the implemented algorithms under the online setting using
the T-Drive dataset, where the parameter settings are the
same to those in Fig. 4. It can be seen from Fig. 5 that the rev-
enue of all algorithms increases with the budget, while DPP-
UCB outperforms BP-UCB, UCB-BV2 and MRCB. We also
notice that a smaller � results in smaller revenue of all algo-
rithms except for OPT
, which is not surprising as the algo-
rithms need to spend more budget to identify the optimal
price when � decreases. Finally, the results shown in Fig. 5
demonstrate that the average regret of DPP-UCB (i.e.,
Reg=W ) approaches 0 when the budget increases, while it is

Fig. 3. Distribution of the traveling distances in the T-Drive dataset
(kilometers).

Fig. 4. Comparing the revenue of the implemented offline algorithms using the T-Drive dataset.
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much smaller than the average regret of the other two algo-
rithms. This corroborates the logarithmic regret bound of
DPP-UCB proved in Section 4.3.

In Figs. 6 and 7, we study the performance of the imple-
mented algorithms using the synthetic datasets. Following
the work in [20], the number of users in Figs. 6 and 7 is set
to W=u1, and the other parameter settings are the same to
those in Figs. 4 and 5. It can be seen that the results shown
in Figs. 6 and 7 are similar to those in Figs. 4 and 5, and our
algorithms outperform the baseline algorithms both under
the online setting and under the offline setting. This can be
explained by similar reasons with those for Figs. 4 and 5.

5.2.2 Privacy Leakage

In this section, we study how the users’ privacy is protected
by the implemented algorithms. Following [8], we use the
Kullback-Leibler (KL) divergence to measure the Privacy
Leakage (PL) of the algorithms. More specifically, we define
PL under the offline setting as follows:

Definition 5 (Privacy leakage under the offline setting).
Under the offline setting, the privacy leakage with respect to any
two adjacent bidding vectors b and b0 (i.e., b and b0 differ in

only one user’s bid) is defined as PL ¼P
p2Sm PðpjbÞ ln½PðpjbÞ

Pðpjb0Þ�

Fig. 5. Comparing the revenue/regret of the implemented online algorithms using the T-Drive dataset.

Fig. 6. Comparing the revenue of the implemented offline algorithms using the synthetic datasets.

Fig. 7. Comparing the revenue/regret of the implemented online algorithms using the synthetic datasets.
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Intuitively, the privacy leakage defined above measures
how much the payment profile varies when one user’s bid
changes. Similarly, we define PL under the online setting as
follows:

Definition 6 (Privacy leakage for the online setting).
Under the online setting, the privacy leakage with respect to
any pj�1 and any adjacent pair ðxj�1; x0j�1Þ (see Definition 4) is

defined as PL ¼P
pj2S Pðpjjpj�1; xj�1Þ ln½

Pðpjjpj�1;xj�1Þ
Pðpjjpj�1;x0j�1Þ

�.
Note that PWDP is a deterministic algorithm and has

infinite PL. Therefore, we only compare the PL of the imple-
mented randomized algorithms in Fig. 8, where the parame-
ter settings are the same to those in Figs. 4, 5, 6, and 7. To
achieve unbiased comparison, we randomly generate 1,000
adjacent bidding vectors (or 1000 adjacent pairs under the
online setting), and plot the average PL in Fig. 8. The results
in Fig. 8 reveal that, the privacy leakage of all the imple-
mented algorithms increases with �, as a larger � allows for
more privacy leakage according to the definition of DP [15].
However, the privacy leakage of our algorithms (i.e., OPEX
and DPP-UCB) is significantly smaller than those of the
other algorithms, which demonstrates the superiority of our
approach for privacy preservation.

6 RELATED WORK

The incentivization problem in mobile crowdsourcing has
been extensively studied, and the related studies in this area
can be found in two excellent surveys [39], [40]. In particular,
the insightful survey in [39] has presented a novel and com-
prehensive taxonomy of existing incentive mechanisms for
mobile crowdsourcing systems, and it has also discussed
about the related approaches indepth. Themore recent survey
in [40] has proposed the first framework in the literature for
defining and enforcing Quality of Information (QoI) in mobile
crowdsourcing, and has also proposed some novel research
challenges andpossible research directions in this area.

Among the existing crowdsourcing incentivization appro-
aches, the work in [6], [7], [16], [17] has designed truthful auc-
tion mechanisms under a limited budget. Most of these
studies are based on the framework of budget feasiblemecha-
nisms proposed in [2], [3], [4]. It can be seen that the best
approximation ratio of the budget feasible mechanisms inves-
tigated in [2], [3], [4] is 1

3 (presented in [3]). However, all these
relatedwork has neglected the privacy issue.

Recently, the privacy protection problems in mobile
crowdsourcing have begun to arouse interests in the litera-
ture. Two excellent studies [41], [42] have provided insightful
surveys on the methods and challenges for protecting the pri-
vacy of mobile crowdsourcing users. The seminal work
in [43] has proposed FIDES, a brilliant trust-based framework

for secure user incentivization in mobile crowdsourcing,
which is the first trust-based framework that simultaneously
solves the problems of incentivizing users’ participation and
guaranteeing data reliability. The work in [44] has proposed a
smart anonymity-preserving reputation framework for
mobile crowdsourcing, which is agnostic to both the reputa-
tion assignment algorithm and the crowdsourcing applica-
tion. The work in [45], [46] has studied the privacy preserving
data publishing and aggregation problems in mobile crowd-
sourcing, but without considering the incentivization prob-
lem. The excellent studies in [35], [47] have proposed some
novel approaches to protect the location privacy of the users,
using the tools of differential privacy or k-anonymity. Two
closest studies to ours are [8] and [18], where some ingenious
auction mechanisms are proposed to protect the bidding pri-
vacy of the users inmobile crowdsourcing. However, no bud-
get constraints are considered in [8], [18], and their problem
models and optimization goals are both very different from
ours. Indeed, both [8] and [18] aim to minimize the total pay-
ment/cost in mobile crowdsourcing, while our goal is to
maximize the system revenue under a budget constraint.
Moreover, only offline algorithms are proposed in [8], [18].
Due to these essential discrepancies, the algorithms andmeth-
ods proposed in [8], [18] cannot be applied to our case.

The dynamic pricing problem for online customers has
also been studied in the literature [20], [28], [33], [34]. Nev-
ertheless, these studies neglected either the budget con-
straint or the privacy issue. Meanwhile, it is noted that the
dynamic pricing problem can be considered as a variant of
the budgeted multi-armed bandit problem investigated
in [36], [48], [49]. Nevertheless, none of these studies consid-
ered the privacy issue. Moreover, our online pricing prob-
lem has some unique features ignored by [36], [48], [49]; i.e.,
the rewards for selecting different prices/arms are implic-
itly correlated (as any user rejecting a given price would
also reject a lower price). Therefore, our regret analysis for
DPP-UCB is very different from those in [36], [48], [49].

Finally, it can be seen that most of the studies on multi-
armed bandits have not considered the privacy issue with
only a few exceptions [27], [50]. However, both [50] and [27]
assume an unlimited budget for playing the arms, so their
algorithms cannot be used to address our problem.

7 CONCLUSION AND DISCUSSIONS

We have studied the problem of designing differentially pri-
vate incentivization mechanisms for mobile crowdsourcing,
where the total payment to users should not exceed a prede-
fined budget. We have proposed novel algorithms for our
problem both in an offline setting and an online setting. We
have shown that our mechanisms achieve provable theoreti-
cal performance bounds on revenue, truthfulness and dif-
ferential privacy simultaneously, and the effectiveness of
our approach has also been corroborated by the results of
numerical experiments. To the best of our knowledge,
we are the first to propose privacy-preserving mechanisms
with provable performance bounds for budget limited
mobile crowdsourcing.

Although the effectiveness of our algorithms has been
proved by both theoretical analysis and experimental evalua-
tions, there are still several improvements that could be done.

Fig. 8. Comparing the privacy leakage.
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First, as our model only assumes homogeneous crowdsourc-
ing tasks (and hence homogeneous task values), extending
the current model to the case of heterogeneous tasks would
be an interesting problem. Second, it would be interesting to
design more efficient algorithms for our problem under the
continuous-pricing scenario, as the running time of the cur-
rent algorithms could be high in this case. Third, althoughwe
have followed some related work (e.g., [20], [28], [33], [34]) to
assume that there are some prior knowledge on the number
of users under the online setting, designing algorithms for
our problem without this assumption could make our
approachmore general.We plan to investigate all these issues
in the future.
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